If it's not what You are looking for type in the equation solver your own equation and let us solve it.
25x^2+45x-9=0
a = 25; b = 45; c = -9;
Δ = b2-4ac
Δ = 452-4·25·(-9)
Δ = 2925
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2925}=\sqrt{225*13}=\sqrt{225}*\sqrt{13}=15\sqrt{13}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(45)-15\sqrt{13}}{2*25}=\frac{-45-15\sqrt{13}}{50} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(45)+15\sqrt{13}}{2*25}=\frac{-45+15\sqrt{13}}{50} $
| 3(x-4)+7=2x-3 | | 5x-19=-43 | | -32=14-3x | | 0.33*x=1 | | -32=4-3x | | y=9/2y+3y+9y* | | -4(-4x-2)+4x-4=-5 | | -5(2x-4)=13 | | x+2x-3x=12 | | (5x+45)+(x+15)=180 | | -9+3(6x-4)=6 | | 4(-9x-3)-2x=1 | | 17v-9v=26 | | 3x+35=260 | | 2*5^x+7=57 | | 4x=3x+57 | | 2(-5x+3)=-4x+7 | | n=3;3n+5+7-2n | | 5/8(x-1/3)=-5/12 | | |y|+12=18 | | 4y9=3y | | -8(-2x+3)-3x=-3x | | m-11=-20 | | 0=0.8h+16 | | (4x+5)-(5x+4)=0 | | 90x-18.4=180 | | 6+7x=-2 | | 2(6x-9)=-5x | | n(5)=15 | | n5=15 | | 10b=10,000 | | |